Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Algorithms for Communications
Buch von Nevio Benvenuto (u. a.)
Sprache: Englisch

167,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
The definitive guide to problem-solving in the design of communications systems

In Algorithms for Communications Systems and their Applications, 2nd Edition, authors Benvenuto, Cherubini, and Tomasin have delivered the ultimate and practical guide to applying algorithms in communications systems. Written for researchers and professionals in the areas of digital communications, signal processing, and computer engineering, Algorithms for Communications Systems presents algorithmic and computational procedures within communications systems that overcome a wide range of problems facing system designers.

New material in this fully updated edition includes:
* MIMO systems (Space-time block coding/Spatial multiplexing /Beamforming and interference management/Channel Estimation)
* OFDM and SC-FDMA (Synchronization/Resource allocation (bit and power loading)/Filtered OFDM)
* Improved radio channel model (Doppler and shadowing/mmWave)
* Polar codes (including practical decoding methods)
* 5G systems (New Radio architecture/initial access for mmWave/physical channels)

The book retains the essential coding and signal processing theoretical and operative elements expected from a classic text, further adopting the new radio of 5G systems as a case study to create the definitive guide to modern communications systems.
The definitive guide to problem-solving in the design of communications systems

In Algorithms for Communications Systems and their Applications, 2nd Edition, authors Benvenuto, Cherubini, and Tomasin have delivered the ultimate and practical guide to applying algorithms in communications systems. Written for researchers and professionals in the areas of digital communications, signal processing, and computer engineering, Algorithms for Communications Systems presents algorithmic and computational procedures within communications systems that overcome a wide range of problems facing system designers.

New material in this fully updated edition includes:
* MIMO systems (Space-time block coding/Spatial multiplexing /Beamforming and interference management/Channel Estimation)
* OFDM and SC-FDMA (Synchronization/Resource allocation (bit and power loading)/Filtered OFDM)
* Improved radio channel model (Doppler and shadowing/mmWave)
* Polar codes (including practical decoding methods)
* 5G systems (New Radio architecture/initial access for mmWave/physical channels)

The book retains the essential coding and signal processing theoretical and operative elements expected from a classic text, further adopting the new radio of 5G systems as a case study to create the definitive guide to modern communications systems.
Über den Autor

Nevio Benvenuto, Professor, DEI-Telecommunications Group, University of Padua, Italy. Nevio received his Ph.D. in engineering from the University of Massachusetts, Amherst, in 1983.

Giovanni Cherubini, IBM Research Zurich, Switzerland. Giovanni Cherubini received M.S. and Ph.D. degrees from the University of California, San Diego, in 1984 and 1986, respectively, all in Electrical Engineering.

Stefano Tomasin, Associate Professor, Department of Information Engineering, University of Padova, Italy. Stefano received the Ph.D. degree in Telecommunications Engineering from the University of Padova, Italy, in 2003.

Inhaltsverzeichnis
Preface 3

Acknowledgments 3

1 Elements of signal theory 7

1.1 Continuous-time linear systems 7

1.2 Discrete-time linear systems 10

Discrete Fourier transform 13

The DFT operator 14

Circular and linear convolution via DFT 15

Convolution by the overlap-save method 17

IIR and FIR filters 19

1.3 Signal bandwidth 22

The sampling theorem 24

Heaviside conditions for the absence of signal distortion 26

1.4 Passband signals and systems 26

Complex representation 26

Relation between a signal and its complex representation 28

Baseband equivalent of a transformation 36

Envelope and instantaneous phase and frequency 37

1.5 Second-order analysis of random processes 38

1.5.1 Correlation 39

Properties of the autocorrelation function 40

1.5.2 Power spectral density 40

Spectral lines in the PSD 40

Cross power spectral density 42

Properties of the PSD 42

PSD through filtering 43

1.5.3 PSD of discrete-time random processes 43

Spectral lines in the PSD 44

PSD through filtering 45

Minimum-phase spectral factorization 46

1.5.4 PSD of passband processes 47

PSD of in-phase and quadrature components 47

Cyclostationary processes 50

1.6 The autocorrelation matrix 56

Properties 56

Eigenvalues 56

Other properties 57

Eigenvalue analysis for Hermitian matrices 58

1.7 Examples of random processes 60

1.8 Matched filter 66

White noise case 68

1.9 Ergodic random processes 69

1.9.1 Mean value estimators 71

Rectangular window 74

Exponential filter 74

General window 75

1.9.2 Correlation estimators 75

Unbiased estimate 76

Biased estimate 76

1.9.3 Power spectral density estimators 77

Periodogram or instantaneous spectrum 77

Welch periodogram 78

Blackman and Tukey correlogram 79

Windowing and window closing 79

1.10 Parametric models of random processes 82

ARMA 82

MA 84

AR 84

Spectral factorization of AR models 87

Whitening filter 87

Relation between ARMA, MA, and AR models 87

1.10.1 Autocorrelation of AR processes 89

1.10.2 Spectral estimation of an AR process 91

Some useful relations 92

AR model of sinusoidal processes 94

1.11 Guide to the bibliography 95

Bibliography 95

Appendixes 97

1.A Multirate systems 98

1.A.1 Fundamentals 98

1.A.2 Decimation 100

1.A.3 Interpolation 102

1.A.4 Decimator filter 104

1.A.5 Interpolator filter 105

1.A.6 Rate conversion 108

1.A.7 Time interpolation 109

Linear interpolation 110

Quadratic interpolation 112

1.A.8 The noble identities 112

1.A.9 The polyphase representation 113

Efficient implementations 114

1.B Generation of a complex Gaussian noise 121

1.C Pseudo-noise sequences 122

Maximal-length 122

CAZAC 124

Gold 125

2 The Wiener filter 129

2.1 The Wiener filter 129

Matrix formulation 130

Optimum filter design 132

The principle of orthogonality 134

Expression of the minimum mean-square error 135

Characterization of the cost function surface 136

The Wiener filter in the z-domain 137

2.2 Linear prediction 140

Forward linear predictor 141

Optimum predictor coefficients 141

Forward prediction error filter 142

Relation between linear prediction and AR models 143

First and second order solutions 144

2.3 The least squares method 145

Data windowing 146

Matrix formulation 146

Correlation matrix 147

Determination of the optimum filter coefficients 147

2.3.1 The principle of orthogonality 148

Minimum cost function 149

The normal equation using the data matrix 149

Geometric interpretation: the projection operator 150

2.3.2 Solutions to the LS problem 151

Singular value decomposition 152

Minimum norm solution 154

2.4 The estimation problem 155

Estimation of a random variable 155

MMSE estimation 155

Extension to multiple observations 157

Linear MMSE estimation of a random variable 158

Linear MMSE estimation of a random vector 158

2.4.1 The Cramér-Rao lower bound 160

Extension to vector parameter 162

2.5 Examples of application 164

2.5.1 Identification of a linear discrete-time system 164

2.5.2 Identification of a continuous-time system 166

2.5.3 Cancellation of an interfering signal 169

2.5.4 Cancellation of a sinusoidal interferer with known frequency 170

2.5.5 Echo cancellation in digital subscriber loops 171

2.5.6 Cancellation of a periodic interferer 172

Bibliography 173

Appendixes 174

2.A The Levinson-Durbin algorithm 175

Lattice filters 176

The Delsarte-Genin algorithm 177

3 Adaptive transversal filters 179

3.1 The MSE design criterion 180

3.1.1 The steepest descent or gradient algorithm 181

Stability 181

Conditions for convergence 183

Adaptation gain 184

Transient behaviour of the MSE 185

3.1.2 The least mean square algorithm 186

Implementation 187

Computational complexity 188

Conditions for convergence 188

3.1.3 Convergence analysis of the LMS algorithm 190

Convergence of the mean 191

Convergence in the mean-square sense: real scalar case 192

Convergence in the mean-square sense: general case 193

Fundamental results 196

Observations 197

Final remarks 199

3.1.4 Other versions of the LMS algorithm 199

Leaky LMS 199

Sign algorithm 200

Normalized LMS 200

Variable adaptation gain 201

3.1.5 Example of application: the predictor 202

3.2 The recursive least squares algorithm 208

Normal equation 209

Derivation 210

Initialization 212

Recursive form of the minimum cost function 212

Convergence 214

Computational complexity 214

Example of application: the predictor 215

3.3 Fast recursive algorithms 215

3.3.1 Comparison of the various algorithms 216

3.4 Examples of application 216

3.4.1 Identification of a linear discrete-time system 217

Finite alphabet case 219

3.4.2 Cancellation of a sinusoidal interferer with known frequency 220

Bibliography 221

4 Transmission channels 223

4.1 Radio channel 223

4.1.1 Propagation and used frequencies in radio transmission 224

Basic propagation mechanisms 224

Frequency ranges 224

4.1.2 Analog front-end architectures 226

Radiation masks 226

Conventional superheterodyne receiver 227

Alternative architectures 227

Direct conversion receiver 228

Single conversion to low-IF 229

Double conversion and wideband IF 229

4.1.3 General channel model 230

High power amplifier 230

Transmission medium 233

Additive noise 234

Phase noise 234

4.1.4 Narrowband radio channel model 235

Equivalent circuit at the receiver 237

Multipath 238

Path loss as a function of distance 240

4.1.5 Fading effects in propagation models 243

Macroscopic fading or shadowing 243

Microscopic fading 245

4.1.6 Doppler shift 245

4.1.7 Wideband channel model 247

Multipath channel parameters 249

Statistical description of fading channels 250

4.1.8 Channel statistics 252

Power delay profile 252

Coherence bandwidth 253

Doppler spectrum 254

Coherence time 255

Doppler spectrum models 256

Power angular spectrum 256

Coherence distance 256

On fading 257

4.1.9 Discrete-time model for fading channels 258

Generation of a process with a preassigned spectrum 259

4.1.10 Discrete-space model of shadowing 261

4.1.11 Multiantenna systems 264

Discrete-time model 266

4.2 Telephone channel 268

Distortion 270

Noise sources 270

Echo 270

Appendixes 272

4.A Discrete-time NB model for mmWave channels 273

Angular domain representation 273

Bibliography 274

5 Vector quantization 277

5.1 Basic concept 277

5.2 Characterization of VQ 278

Parameters determining VQ performance 278

Comparison between VQ and scalar quantization 280

5.3 Optimum quantization 281

Generalized Lloyd algorithm 282

5.4 The Linde, Buzo, and Gray algorithm 284

Choice of the initial codebook 285

Splitting procedure 286

Selection of the training sequence 287

5.4.1 k-means clustering 288

5.5 Variants of VQ 288

Tree search VQ 288

Multistage VQ 289

Product code VQ 291

5.6 VQ of channel state information 292

MISO channel quantization 292

Channel feedback with feedforward information 294

5.7 Principal component analysis 295

5.7.1 PCA and k-means clustering 297

Bibliography 299

6 Digital transmission model and channel capacity 301

6.1 Digital transmission model 301

6.2 Detection 305

6.2.1 Optimum detection 306

ML 307

MAP 307

6.2.2 Soft detection 309

LLRs associated to bits of BMAP 309

Simplified expressions 312

6.2.3 Receiver strategies 314

6.3 Relevant parameters of the digital transmission model 314

Relations among parameters 315

6.4 Error probability 317

6.5 Capacity 320

6.5.1 Discrete-time AWGN channel 321

6.5.2 SISO narrowband AWGN channel 322

6.5.3 SISO dispersive AGN channel 322

6.5.4 MIMO discrete-time NB AWGN channel 325

6.6 Achievable rates of modulations in AWGN channels 326

6.6.1 Rate as a function of the SNR per dimension 327

6.6.2 Coding strategies depending on the signal-to-noise ratio 329

Coding gain 330

6.6.3 Achievable rate of an AWGN channel using PAM 331

Bibliography 333

Appendixes 334

6.A Gray labelling 335

6.B The Gaussian distribution and Marcum functions 336

6.B.1 The Q function 336

6.B.2 Marcum function 338

7 Single-carrier modulation 341

7.1 Signals and systems 341

7.1.1 Baseband digital transmission (PAM) 341

Modulator 342

Transmission channel 343

Receiver 343

Power spectral density 344

7.1.2 Passband digital transmission (QAM) 346

Modulator 346

Power spectral density 347

Three equivalent representations of the modulator 348

Coherent receiver 349

7.1.3 Baseband equivalent model of a QAM system 349

Signal analysis 349

7.1.4 Characterization of system elements 353

Transmitter 353

Transmission channel 354

Receiver 355

7.2 Intersymbol interference 356

Discrete-time equivalent system 356

Nyquist pulses 357

Eye diagram 361

7.3 Performance analysis 365

Signal-to-noise ratio 365

Symbol error probability in the absence of ISI 366

Matched filter receiver 367

7.4 Channel equalization 367

7.4.1 Zero-forcing equalizer 367

7.4.2 Linear equalizer 368

Optimum receiver in the presence of noise and ISI 369

Alternative derivation of the IIR equalizer 370

Signal-to-noise ratio at detector 374

7.4.3 LE with a...
Details
Erscheinungsjahr: 2021
Fachbereich: Nachrichtentechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 960 S.
ISBN-13: 9781119567967
ISBN-10: 1119567963
Sprache: Englisch
Einband: Gebunden
Autor: Benvenuto, Nevio
Cherubini, Giovanni
Tomasin, Stefano
Auflage: 2nd edition
Hersteller: Wiley
Maße: 254 x 178 x 51 mm
Von/Mit: Nevio Benvenuto (u. a.)
Erscheinungsdatum: 01.02.2021
Gewicht: 1,86 kg
Artikel-ID: 118912048
Über den Autor

Nevio Benvenuto, Professor, DEI-Telecommunications Group, University of Padua, Italy. Nevio received his Ph.D. in engineering from the University of Massachusetts, Amherst, in 1983.

Giovanni Cherubini, IBM Research Zurich, Switzerland. Giovanni Cherubini received M.S. and Ph.D. degrees from the University of California, San Diego, in 1984 and 1986, respectively, all in Electrical Engineering.

Stefano Tomasin, Associate Professor, Department of Information Engineering, University of Padova, Italy. Stefano received the Ph.D. degree in Telecommunications Engineering from the University of Padova, Italy, in 2003.

Inhaltsverzeichnis
Preface 3

Acknowledgments 3

1 Elements of signal theory 7

1.1 Continuous-time linear systems 7

1.2 Discrete-time linear systems 10

Discrete Fourier transform 13

The DFT operator 14

Circular and linear convolution via DFT 15

Convolution by the overlap-save method 17

IIR and FIR filters 19

1.3 Signal bandwidth 22

The sampling theorem 24

Heaviside conditions for the absence of signal distortion 26

1.4 Passband signals and systems 26

Complex representation 26

Relation between a signal and its complex representation 28

Baseband equivalent of a transformation 36

Envelope and instantaneous phase and frequency 37

1.5 Second-order analysis of random processes 38

1.5.1 Correlation 39

Properties of the autocorrelation function 40

1.5.2 Power spectral density 40

Spectral lines in the PSD 40

Cross power spectral density 42

Properties of the PSD 42

PSD through filtering 43

1.5.3 PSD of discrete-time random processes 43

Spectral lines in the PSD 44

PSD through filtering 45

Minimum-phase spectral factorization 46

1.5.4 PSD of passband processes 47

PSD of in-phase and quadrature components 47

Cyclostationary processes 50

1.6 The autocorrelation matrix 56

Properties 56

Eigenvalues 56

Other properties 57

Eigenvalue analysis for Hermitian matrices 58

1.7 Examples of random processes 60

1.8 Matched filter 66

White noise case 68

1.9 Ergodic random processes 69

1.9.1 Mean value estimators 71

Rectangular window 74

Exponential filter 74

General window 75

1.9.2 Correlation estimators 75

Unbiased estimate 76

Biased estimate 76

1.9.3 Power spectral density estimators 77

Periodogram or instantaneous spectrum 77

Welch periodogram 78

Blackman and Tukey correlogram 79

Windowing and window closing 79

1.10 Parametric models of random processes 82

ARMA 82

MA 84

AR 84

Spectral factorization of AR models 87

Whitening filter 87

Relation between ARMA, MA, and AR models 87

1.10.1 Autocorrelation of AR processes 89

1.10.2 Spectral estimation of an AR process 91

Some useful relations 92

AR model of sinusoidal processes 94

1.11 Guide to the bibliography 95

Bibliography 95

Appendixes 97

1.A Multirate systems 98

1.A.1 Fundamentals 98

1.A.2 Decimation 100

1.A.3 Interpolation 102

1.A.4 Decimator filter 104

1.A.5 Interpolator filter 105

1.A.6 Rate conversion 108

1.A.7 Time interpolation 109

Linear interpolation 110

Quadratic interpolation 112

1.A.8 The noble identities 112

1.A.9 The polyphase representation 113

Efficient implementations 114

1.B Generation of a complex Gaussian noise 121

1.C Pseudo-noise sequences 122

Maximal-length 122

CAZAC 124

Gold 125

2 The Wiener filter 129

2.1 The Wiener filter 129

Matrix formulation 130

Optimum filter design 132

The principle of orthogonality 134

Expression of the minimum mean-square error 135

Characterization of the cost function surface 136

The Wiener filter in the z-domain 137

2.2 Linear prediction 140

Forward linear predictor 141

Optimum predictor coefficients 141

Forward prediction error filter 142

Relation between linear prediction and AR models 143

First and second order solutions 144

2.3 The least squares method 145

Data windowing 146

Matrix formulation 146

Correlation matrix 147

Determination of the optimum filter coefficients 147

2.3.1 The principle of orthogonality 148

Minimum cost function 149

The normal equation using the data matrix 149

Geometric interpretation: the projection operator 150

2.3.2 Solutions to the LS problem 151

Singular value decomposition 152

Minimum norm solution 154

2.4 The estimation problem 155

Estimation of a random variable 155

MMSE estimation 155

Extension to multiple observations 157

Linear MMSE estimation of a random variable 158

Linear MMSE estimation of a random vector 158

2.4.1 The Cramér-Rao lower bound 160

Extension to vector parameter 162

2.5 Examples of application 164

2.5.1 Identification of a linear discrete-time system 164

2.5.2 Identification of a continuous-time system 166

2.5.3 Cancellation of an interfering signal 169

2.5.4 Cancellation of a sinusoidal interferer with known frequency 170

2.5.5 Echo cancellation in digital subscriber loops 171

2.5.6 Cancellation of a periodic interferer 172

Bibliography 173

Appendixes 174

2.A The Levinson-Durbin algorithm 175

Lattice filters 176

The Delsarte-Genin algorithm 177

3 Adaptive transversal filters 179

3.1 The MSE design criterion 180

3.1.1 The steepest descent or gradient algorithm 181

Stability 181

Conditions for convergence 183

Adaptation gain 184

Transient behaviour of the MSE 185

3.1.2 The least mean square algorithm 186

Implementation 187

Computational complexity 188

Conditions for convergence 188

3.1.3 Convergence analysis of the LMS algorithm 190

Convergence of the mean 191

Convergence in the mean-square sense: real scalar case 192

Convergence in the mean-square sense: general case 193

Fundamental results 196

Observations 197

Final remarks 199

3.1.4 Other versions of the LMS algorithm 199

Leaky LMS 199

Sign algorithm 200

Normalized LMS 200

Variable adaptation gain 201

3.1.5 Example of application: the predictor 202

3.2 The recursive least squares algorithm 208

Normal equation 209

Derivation 210

Initialization 212

Recursive form of the minimum cost function 212

Convergence 214

Computational complexity 214

Example of application: the predictor 215

3.3 Fast recursive algorithms 215

3.3.1 Comparison of the various algorithms 216

3.4 Examples of application 216

3.4.1 Identification of a linear discrete-time system 217

Finite alphabet case 219

3.4.2 Cancellation of a sinusoidal interferer with known frequency 220

Bibliography 221

4 Transmission channels 223

4.1 Radio channel 223

4.1.1 Propagation and used frequencies in radio transmission 224

Basic propagation mechanisms 224

Frequency ranges 224

4.1.2 Analog front-end architectures 226

Radiation masks 226

Conventional superheterodyne receiver 227

Alternative architectures 227

Direct conversion receiver 228

Single conversion to low-IF 229

Double conversion and wideband IF 229

4.1.3 General channel model 230

High power amplifier 230

Transmission medium 233

Additive noise 234

Phase noise 234

4.1.4 Narrowband radio channel model 235

Equivalent circuit at the receiver 237

Multipath 238

Path loss as a function of distance 240

4.1.5 Fading effects in propagation models 243

Macroscopic fading or shadowing 243

Microscopic fading 245

4.1.6 Doppler shift 245

4.1.7 Wideband channel model 247

Multipath channel parameters 249

Statistical description of fading channels 250

4.1.8 Channel statistics 252

Power delay profile 252

Coherence bandwidth 253

Doppler spectrum 254

Coherence time 255

Doppler spectrum models 256

Power angular spectrum 256

Coherence distance 256

On fading 257

4.1.9 Discrete-time model for fading channels 258

Generation of a process with a preassigned spectrum 259

4.1.10 Discrete-space model of shadowing 261

4.1.11 Multiantenna systems 264

Discrete-time model 266

4.2 Telephone channel 268

Distortion 270

Noise sources 270

Echo 270

Appendixes 272

4.A Discrete-time NB model for mmWave channels 273

Angular domain representation 273

Bibliography 274

5 Vector quantization 277

5.1 Basic concept 277

5.2 Characterization of VQ 278

Parameters determining VQ performance 278

Comparison between VQ and scalar quantization 280

5.3 Optimum quantization 281

Generalized Lloyd algorithm 282

5.4 The Linde, Buzo, and Gray algorithm 284

Choice of the initial codebook 285

Splitting procedure 286

Selection of the training sequence 287

5.4.1 k-means clustering 288

5.5 Variants of VQ 288

Tree search VQ 288

Multistage VQ 289

Product code VQ 291

5.6 VQ of channel state information 292

MISO channel quantization 292

Channel feedback with feedforward information 294

5.7 Principal component analysis 295

5.7.1 PCA and k-means clustering 297

Bibliography 299

6 Digital transmission model and channel capacity 301

6.1 Digital transmission model 301

6.2 Detection 305

6.2.1 Optimum detection 306

ML 307

MAP 307

6.2.2 Soft detection 309

LLRs associated to bits of BMAP 309

Simplified expressions 312

6.2.3 Receiver strategies 314

6.3 Relevant parameters of the digital transmission model 314

Relations among parameters 315

6.4 Error probability 317

6.5 Capacity 320

6.5.1 Discrete-time AWGN channel 321

6.5.2 SISO narrowband AWGN channel 322

6.5.3 SISO dispersive AGN channel 322

6.5.4 MIMO discrete-time NB AWGN channel 325

6.6 Achievable rates of modulations in AWGN channels 326

6.6.1 Rate as a function of the SNR per dimension 327

6.6.2 Coding strategies depending on the signal-to-noise ratio 329

Coding gain 330

6.6.3 Achievable rate of an AWGN channel using PAM 331

Bibliography 333

Appendixes 334

6.A Gray labelling 335

6.B The Gaussian distribution and Marcum functions 336

6.B.1 The Q function 336

6.B.2 Marcum function 338

7 Single-carrier modulation 341

7.1 Signals and systems 341

7.1.1 Baseband digital transmission (PAM) 341

Modulator 342

Transmission channel 343

Receiver 343

Power spectral density 344

7.1.2 Passband digital transmission (QAM) 346

Modulator 346

Power spectral density 347

Three equivalent representations of the modulator 348

Coherent receiver 349

7.1.3 Baseband equivalent model of a QAM system 349

Signal analysis 349

7.1.4 Characterization of system elements 353

Transmitter 353

Transmission channel 354

Receiver 355

7.2 Intersymbol interference 356

Discrete-time equivalent system 356

Nyquist pulses 357

Eye diagram 361

7.3 Performance analysis 365

Signal-to-noise ratio 365

Symbol error probability in the absence of ISI 366

Matched filter receiver 367

7.4 Channel equalization 367

7.4.1 Zero-forcing equalizer 367

7.4.2 Linear equalizer 368

Optimum receiver in the presence of noise and ISI 369

Alternative derivation of the IIR equalizer 370

Signal-to-noise ratio at detector 374

7.4.3 LE with a...
Details
Erscheinungsjahr: 2021
Fachbereich: Nachrichtentechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 960 S.
ISBN-13: 9781119567967
ISBN-10: 1119567963
Sprache: Englisch
Einband: Gebunden
Autor: Benvenuto, Nevio
Cherubini, Giovanni
Tomasin, Stefano
Auflage: 2nd edition
Hersteller: Wiley
Maße: 254 x 178 x 51 mm
Von/Mit: Nevio Benvenuto (u. a.)
Erscheinungsdatum: 01.02.2021
Gewicht: 1,86 kg
Artikel-ID: 118912048
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte