Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Algebraic Curves
Towards Moduli Spaces
Buch von Maxim E. Kazaryan (u. a.)
Sprache: Englisch

74,89 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well.
The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces.

Thebook does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves ¿ such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points ¿ are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion.

Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well.
The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces.

Thebook does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves ¿ such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points ¿ are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion.

Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework
Über den Autor

Maxim Kazaryan is a researcher at the Steklov Mathematical Institute RAS. He also works as a professor of mathematics at the NRU Higher School of Economics since 2008 and at the Skolkovo Institute of Science and Technology since 2016.

Sergei Lando is a professor of mathematics at the NRU Higher School of Economics since 2008 and at the Skolkovo Institute of Science and Technology since 2016. He was the first Dean of the Department of Mathematics at the NRU HSE. He also is a Vice-President of the Moscow Mathematical Society.

Victor Prasolov is a permanent teacher of mathematics at the Independent University of Moscow.

Zusammenfassung

Leads a reader to far advanced topics widely used in modern research, using basic tools from the first two years of university studies

From the very beginning, the study of algebraic curves is aimed at the construction of their moduli spaces in the final chapters

Supplied with numerous exercises and problems both making the book a convenient base for a university lecture course and allowing the reader to control his/her progress

Inhaltsverzeichnis

Introduction.- 1 Preliminaries - 2 Algebraic curves.- 3 Complex structure and the topology of curves.- 4 Curves in projective spaces.- 5 Plücker formulas.- 6 Mappings of curves.- 7 Differential 1-forms on curves.- 8 Line bundles, linear systems, and divisors.- 9 Riemann-Roch formula and its applications.- 10 Proof of the Riemann-Roch formula.- 11 Weierstrass points.- 12 Abel's theorem.- 13 Examples of moduli spaces.- 14 Approaches to constructing moduli spaces.- 15 Moduli spaces of rational curves with marked points.- 16 Stable curves.- 17 A backward look from the viewpoint of characteristic classes.- 18 Moduli spaces of stable maps.- 19 Exam problems.- References.- Index.

Details
Erscheinungsjahr: 2019
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Moscow Lectures
Inhalt: xiv
231 S.
37 s/w Illustr.
231 p. 37 illus.
ISBN-13: 9783030029425
ISBN-10: 3030029425
Sprache: Englisch
Herstellernummer: 978-3-030-02942-5
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Kazaryan, Maxim E.
Lando, Sergei K.
Prasolov, Victor V.
Übersetzung: Tsilevich, Natalia
Auflage: 1st ed. 2018
Hersteller: Springer International Publishing
Springer International Publishing AG
Moscow Lectures
Maße: 241 x 160 x 20 mm
Von/Mit: Maxim E. Kazaryan (u. a.)
Erscheinungsdatum: 06.02.2019
Gewicht: 0,541 kg
Artikel-ID: 114694574
Über den Autor

Maxim Kazaryan is a researcher at the Steklov Mathematical Institute RAS. He also works as a professor of mathematics at the NRU Higher School of Economics since 2008 and at the Skolkovo Institute of Science and Technology since 2016.

Sergei Lando is a professor of mathematics at the NRU Higher School of Economics since 2008 and at the Skolkovo Institute of Science and Technology since 2016. He was the first Dean of the Department of Mathematics at the NRU HSE. He also is a Vice-President of the Moscow Mathematical Society.

Victor Prasolov is a permanent teacher of mathematics at the Independent University of Moscow.

Zusammenfassung

Leads a reader to far advanced topics widely used in modern research, using basic tools from the first two years of university studies

From the very beginning, the study of algebraic curves is aimed at the construction of their moduli spaces in the final chapters

Supplied with numerous exercises and problems both making the book a convenient base for a university lecture course and allowing the reader to control his/her progress

Inhaltsverzeichnis

Introduction.- 1 Preliminaries - 2 Algebraic curves.- 3 Complex structure and the topology of curves.- 4 Curves in projective spaces.- 5 Plücker formulas.- 6 Mappings of curves.- 7 Differential 1-forms on curves.- 8 Line bundles, linear systems, and divisors.- 9 Riemann-Roch formula and its applications.- 10 Proof of the Riemann-Roch formula.- 11 Weierstrass points.- 12 Abel's theorem.- 13 Examples of moduli spaces.- 14 Approaches to constructing moduli spaces.- 15 Moduli spaces of rational curves with marked points.- 16 Stable curves.- 17 A backward look from the viewpoint of characteristic classes.- 18 Moduli spaces of stable maps.- 19 Exam problems.- References.- Index.

Details
Erscheinungsjahr: 2019
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Moscow Lectures
Inhalt: xiv
231 S.
37 s/w Illustr.
231 p. 37 illus.
ISBN-13: 9783030029425
ISBN-10: 3030029425
Sprache: Englisch
Herstellernummer: 978-3-030-02942-5
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Kazaryan, Maxim E.
Lando, Sergei K.
Prasolov, Victor V.
Übersetzung: Tsilevich, Natalia
Auflage: 1st ed. 2018
Hersteller: Springer International Publishing
Springer International Publishing AG
Moscow Lectures
Maße: 241 x 160 x 20 mm
Von/Mit: Maxim E. Kazaryan (u. a.)
Erscheinungsdatum: 06.02.2019
Gewicht: 0,541 kg
Artikel-ID: 114694574
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte