128,39 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Fully revised and expanded textbook, now in its 5th edition, on adaptive signal processing adaptive filtering
Features problems, references, exercises, applications, and MATLAB code so readers can test algorithms
Includes a new chapter on Kalman Filtering and several expanded chapters
Request lecturer material: [...]
Introduction to Adaptive Filtering.- Fundamentals of Adaptive Filtering.- The Least-Mean-Square (LMS) Algorithm.- LMS-Based Algorithms.- LMS-Based Algorithms.- Conventional RLS Adaptive Filter.- Set-Membership Adaptive Filtering.- Adaptive Lattice-Based RLS Algorithms.- Fast Transversal RLS Algorithms.- QR-Decomposition-Based RLS Filters.- Adaptive IIR Filters.- Nonlinear Adaptive Filtering.- Subband Adaptive Filters.- Blind Adaptive Filtering.- Kalman Filtering.- Complex Differentiation.- Quantization Effects in the LMS Algorithm.- Quantization Effects in the RLS Algorithm.- Analysis of Set-Membership Affine Projection Algorithm.- Index.
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xviii
495 S. 209 s/w Illustr. 23 farbige Illustr. 495 p. 232 illus. 23 illus. in color. |
ISBN-13: | 9783030290566 |
ISBN-10: | 3030290565 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: | Diniz, Paulo S. R. |
Auflage: | 5th ed. 2020 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 285 x 215 x 34 mm |
Von/Mit: | Paulo S. R. Diniz |
Erscheinungsdatum: | 24.12.2019 |
Gewicht: | 1,498 kg |
Fully revised and expanded textbook, now in its 5th edition, on adaptive signal processing adaptive filtering
Features problems, references, exercises, applications, and MATLAB code so readers can test algorithms
Includes a new chapter on Kalman Filtering and several expanded chapters
Request lecturer material: [...]
Introduction to Adaptive Filtering.- Fundamentals of Adaptive Filtering.- The Least-Mean-Square (LMS) Algorithm.- LMS-Based Algorithms.- LMS-Based Algorithms.- Conventional RLS Adaptive Filter.- Set-Membership Adaptive Filtering.- Adaptive Lattice-Based RLS Algorithms.- Fast Transversal RLS Algorithms.- QR-Decomposition-Based RLS Filters.- Adaptive IIR Filters.- Nonlinear Adaptive Filtering.- Subband Adaptive Filters.- Blind Adaptive Filtering.- Kalman Filtering.- Complex Differentiation.- Quantization Effects in the LMS Algorithm.- Quantization Effects in the RLS Algorithm.- Analysis of Set-Membership Affine Projection Algorithm.- Index.
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xviii
495 S. 209 s/w Illustr. 23 farbige Illustr. 495 p. 232 illus. 23 illus. in color. |
ISBN-13: | 9783030290566 |
ISBN-10: | 3030290565 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: | Diniz, Paulo S. R. |
Auflage: | 5th ed. 2020 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 285 x 215 x 34 mm |
Von/Mit: | Paulo S. R. Diniz |
Erscheinungsdatum: | 24.12.2019 |
Gewicht: | 1,498 kg |