Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform. The author starts by discussing the classical theory of theta functions from the point of view of the representation theory of the Heisenberg group (in which the usual Fourier transform plays the prominent role). He then shows that in the algebraic approach to this theory, the Fourier-Mukai transform can often be used to simplify the existing proofs or to provide completely new proofs of many important theorems. Graduate students and researchers with strong interest in algebraic geometry will find much of interest in this volume.
The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform. The author starts by discussing the classical theory of theta functions from the point of view of the representation theory of the Heisenberg group (in which the usual Fourier transform plays the prominent role). He then shows that in the algebraic approach to this theory, the Fourier-Mukai transform can often be used to simplify the existing proofs or to provide completely new proofs of many important theorems. Graduate students and researchers with strong interest in algebraic geometry will find much of interest in this volume.
Inhaltsverzeichnis
Part I. Analytic Theory: 1. Line bundles on complex tori; 2. Representations of Heisenberg groups I ; 3. Theta functions; 4. Representations of Heisenberg groups II: intertwining operators; 5. Theta functions II: functional equation; 6. Mirror symmetry for tori; 7. Cohomology of a line bundle on a complex torus: mirror symmetry approach; Part II. Algebraic Theory: 8. Abelian varieties and theorem of the cube; 9. Dual Abelian variety; 10. Extensions, biextensions and duality; 11. Fourier-Mukai transform; 12. Mumford group and Riemann's quartic theta relation; 13. More on line bundles; 14. Vector bundles on elliptic curves; 15. Equivalences between derived categories of coherent sheaves on Abelian varieties; Part III. Jacobians: 16. Construction of the Jacobian; 17. Determinant bundles and the principle polarization of the Jacobian; 18. Fay's trisecant identity; 19. More on symmetric powers of a curve; 20. Varieties of special divisors; 21. Torelli theorem; 22. Deligne's symbol, determinant bundles and strange duality; Bibliographical notes and further reading; References.
Details
Erscheinungsjahr: 2009
Fachbereich: Geometrie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9780521808040
ISBN-10: 0521808049
Sprache: Englisch
Einband: Gebunden
Autor: Polishchuk, Alexander
Alexander, Polishchuk
Redaktion: Bollobas, Bela
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 157 x 23 mm
Von/Mit: Alexander Polishchuk (u. a.)
Erscheinungsdatum: 28.01.2009
Gewicht: 0,653 kg
Artikel-ID: 102064231

Ähnliche Produkte